

Elektron® WE54

Elektron WE54 is a high strength fully heat treatable magnesium based casting alloy for use at temperatures up to 300°C. The alloy develops high strength properties at elevated temperatures, without containing either silver or thorium.

Applications

The excellent retention of properties at elevated temperatures and improved corrosion resistance will be of interest to designers of power systems, transmissions, missiles, high performance cars and other high technology applications.

Prolonged use of this alloy (ie in excess of 1000 hours) at temperatures in the range 100°C–250°C may result in the loss of ductility. An alternative alloy is Elektron WE43.

Specifications

AECMA MG-C96001 AMS 4426 ASTM B80 WE54A-T6 BS2970 MAG14-TF UNS M18410 ISO 16220: MC95310

Chemical composition

Yttrium	4.75-5.5%		
Heavy rare earths*	1.0-2.0%		
Neodymium	1.5-2.0%		
Zirconium	0.4% min		
Magnesium	Balance		
*Heavy rare earth fraction contains mainly Yb, Er, Dy, and Gd.			

Heat treatment

The alloy develops its properties in the fully heat treated (T6) condition ie: 8 hours at 525°C, Hot water or polymer quench or air cool, Age for 16 hours at 250°C, Air cool.

Physical properties

Specific gravity	1.85
Coefficient of thermal expansion	27.0 x 10 ⁻⁶ K ⁻¹
Thermal conductivity	52 Wm ⁻¹ K ⁻¹
Specific heat	960 Jkg ⁻¹ K ⁻¹
Electrical resistivity	173 nΩm
Modulus of elasticity	44.1 GPa
Poissons ratio	0.3
Melting range	545-640°C
Damping index	0.17
Brinell hardness	85

Design data

Minimum specification tensile p	roperties
ISO 16220	
0.2% Proof stress	170 MPa
Tensile strength	250 MPa
Elongation	2%

Other properties

Castability

Fine grained and pressure tight with good casting characteristics.

Pattern makers shrinkage factor

1.5%

Weldability

Weldable by the tungsten arc inert gas process (TIG) with a filler rod of the parent alloy composition. Castings should be heat treated after welding: 1 hour at 510°C, quenched or air cooled and 16 hours at 250°C.

Machining

Elektron WE54 castings, like all magnesium alloys, machine faster than any other metal. Providing the geometry of the part allows, the limiting factor is the power and speed of the machine rather than the quality of the tool material.

The power required per cubic centimetre of metal removed varies from 9 to 14 watts per minute depending on the operation.

Surface treatment

Yttrium containing magnesium alloys do not respond to certain chemical treatments, notably some of the chromate conversion coating baths. The precautions and alternative treatments are identified in the Luxfer MEL Technologies Design Guide.

Corrosion resistance

Additions of yttrium contribute to the excellent corrosion resistance characteristics of Elektron WE54 to the extent that it is of a similar order to aluminium casting alloys under salt spray conditions.

Corrosion rate	mg/cm²/day
Intermittent salt spray	0.023
ASTM B117 salt fog	0.1-0.2
Sea water immersion	0.1

Ambient temperature mechanical properties

Typical tensile properties

0.2% Proof stress	205 MPa
Tensile strength	280 MPa
Elongation	4%

Typical compressive properties

0.2% Proof stress	165–175 MPa
Ultimate strength	410 MPa
Typical shear properties	
Ultimate stress	150 MPa
Fracture toughness	
KIC	14.3 MPa m ^{1/2}

Fatigue properties

Rotating bend test

	Stress reversals			
Endurance limit MPa	106	5 x 10 ⁶	107	5 x 10 ⁷
Unnotched	102	100	99	97

Ambient temperature mechanical properties

Typical tensile properties

	0.2% Proof stress (MPa)	Tensile strength (MPa)	Elongation (%)
20°C	205	280	4.0
100°C	197	260	4.5
150°C	195	255	5.0
200°C	183	241	6.5
250°C	175	230	9.0

Figure 1. Effect of temperature on tensile properties.

Creep properties

Figure 2. Stress/time relationship at 200°C and 250°C.

Figure 3. Rotating bend fatigue tests.

Fatigue properties

Cut up properties on samples taken from actual castings

Source	Section thickness (mm)	Number of tests		0.2% proof stress (MPa)	Tensile strength (MPa)	Elongation
U.K.	5–20	27	Maximum Average Minimum	219 195 177	300 274 250	11 5 1
Canada	8–20	58	Maximum Average Minimum	238 203 183	297 275 240	7 3 1
France	10-20	34	Maximum Average Minimum	222 204 190	303 276 237	8 5 1
Germany	8–20	59	Maximum Average Minimum	254 212 187	304 277 230	7 4 1
USA	10-20	41	Maximum Average Minimum	222 202 168	281 263 214	7 3 1

Discover more at www.luxfermeltechnologies.com

⁺ The information contained within is meant as a guideline only

Copyright © Luxfer MEL Technologies 2018. The information provided within this document is aimed to assist manufacturers and other interested parties in the use of magnesium alloys. Luxfer MEL Technologies accepts no liability in whole or in part from use and interpretation of the data herein. All information is given in good faith but without warranty. Freedom from patent rights must not be assumed. Health and Safety information is available for all Luxfer MEL Technologies products. **DS-1010-1118**

Luxfer MEL Technologies Elektron Technology Centre Lumns Lane, Manchester, M27 8LN, UK T +44 (0) 161 911 1000 Luxfer MEL Technologies 500 Barbertown Point Breeze Road Flemington, NJ 08822, USA T +1 908 782 5800 Luxfer MEL Technologies 4601 Westown Parkway Suite 130 West Des Moines, IA 50266 T +1 515 421 4100

